Evolution of hindlimb posture in nonmammalian therapsids: biomechanical tests of paleontological hypotheses

Paleobiology ◽  
2001 ◽  
Vol 27 (1) ◽  
pp. 14-38 ◽  
Author(s):  
Richard W. Blob

Analyses of limb joint morphology in nonmammalian therapsid “mammal-like reptiles” have suggested that among many lineages, individual animals were capable of shifting between sprawling and upright hindlimb postures, much like modern crocodilians. The ability to use multiple limb postures thus might have been ancestral to the generally more upright posture that evolved during the transition from “mammal-like reptiles” to mammals. Here I derive a biomechanical model to test this hypothesis through calculations of expected posture-related changes in femoral stress for therapsid taxa using different limb postures. The model incorporates morphological data from fossil specimens and experimental data from force platform experiments on iguanas and alligators.Experimental data suggest that the evolutionary transition from sprawling to nonsprawling posture was accompanied by a change in the predominant loading regime of the limb bones, from torsion to bending. Changes in the cross-sectional morphology of the hindlimb bones between sphenacodontid “pelycosaurs” and gorgonopsid therapsids are consistent with the hypothesis that bending loads increased in importance early in therapsid evolution; thus, bending stresses are an appropriate model for the maximal loads experienced by the limb bones of theriodont therapsids. Results from the model used to estimate stresses in these taxa do not refute the use of both sprawling and more upright stance among basal theriodont therapsids. Thus, the hypothesis that the use of multiple postures was ancestral to the more upright posture typical of most mammals is biomechanically plausible. Model calculations also indicate that the axial rotation of the femur typical in sprawling locomotion can reduce peak bending stresses. Therefore, as experimental data from alligators and iguanas suggest, the evolution of nonsprawling limb posture and kinematics in therapsids might have been accompanied by increased limb bone bending stress.

Paleobiology ◽  
2009 ◽  
Vol 35 (2) ◽  
pp. 251-269 ◽  
Author(s):  
Philip S. L. Anderson ◽  
Mark W. Westneat

Biomechanical models illustrate how the principles of physics and physiology determine function in organisms, allowing ecological inferences and functional predictions to be based on morphology. Dynamic lever and linkage models of the mechanisms of the jaw and skull during feeding in fishes predict function from morphology and have been used to compare the feeding biomechanics of diverse fish groups, including fossil taxa, and to test ideas in ecological morphology. Here we perform detailed computational modeling of the four-bar linkage mechanism in the skull and jaw systems ofDunkleosteus terrelli, using software that accepts landmark morphological data to simulate the movements and mechanics of the skull and jaws during prey capture. The linkage system is based on the quadrate and cranio-thoracic joints: Cranial elevation around the cranio-thoracic joint forces the quadrate joint forward, which, coupled with a jaw depressor muscle connecting the jaw to the thoracic shield, causes the jaw to rotate downward during skull expansion. Results show a high speed transmission for jaw opening, producing a rapid expansion phase similar to that in modern fishes that use suction during prey capture. During jaw closing, the model computes jaw and skull rotation and a series of mechanical metrics including effective mechanical advantage of the jaw lever and kinematic transmission of the skull linkage system. Estimates of muscle cross-sectional area based on the largest of five specimens analyzed allow the bite force and strike speed to be estimated. Jaw-closing muscles ofDunkleosteuspowered an extraordinarily strong bite, with an estimated maximal bite force of over 6000 N at the jaw tip and more than 7400 N at the rear dental plates, for a large individual (10 m total length). This bite force capability is among the most powerful bites in animals. The combination of rapid gape expansion and powerful bite meant thatDunkleosteus terrellicould both catch elusive prey and penetrate protective armor, allowing this apex predator to potentially eat anything in its ecosystem, including other placoderms.


2018 ◽  
Vol 84 (10) ◽  
pp. 23-28
Author(s):  
D. A. Golentsov ◽  
A. G. Gulin ◽  
Vladimir A. Likhter ◽  
K. E. Ulybyshev

Destruction of bodies is accompanied by formation of both large and microscopic fragments. Numerous experiments on the rupture of different samples show that those fragments carry a positive electric charge. his phenomenon is of interest from the viewpoint of its potential application to contactless diagnostics of the early stage of destruction of the elements in various technical devices. However, the lack of understanding the nature of this phenomenon restricts the possibility of its practical applications. Experimental studies were carried out using an apparatus that allowed direct measurements of the total charge of the microparticles formed upon sample rupture and determination of their size and quantity. The results of rupture tests of duralumin and electrical steel showed that the size of microparticles is several tens of microns, the particle charge per particle is on the order of 10–14 C, and their amount can be estimated as the ratio of the cross-sectional area of the sample at the point of discontinuity to the square of the microparticle size. A model of charge formation on the microparticles is developed proceeding from the experimental data and current concept of the electron gas in metals. The model makes it possible to determine the charge of the microparticle using data on the particle size and mechanical and electrical properties of the material. Model estimates of the total charge of particles show order-of-magnitude agreement with the experimental data.


2005 ◽  
Vol 70 (3) ◽  
pp. 383-402
Author(s):  
Valery A. Danilov ◽  
Il Moon

This paper is devoted to the development of a new method for estimating mass transfer coefficients and effective area in packed columns in the case of reactive absorption. The method is based on a plug-flow model of reactive absorption of carbon dioxide with sodium hydroxide solution. The parameter estimation problem is solved using an optimization technique. Some mass transfer parameters are found to be correlated. Global sensitivity analysis by Sobol's technique showed that the unit model with the defined objective function is sensitive to the estimated parameter. Case studies of reactive absorption with different packings illustrate application of the proposed method for estimating mass transfer coefficients and effective area from column operation data. The model calculations are compared with experimental data obtained by other authors. The concentration profiles calculated by the unit model with the estimated parameters are shown to match well with experimental profiles from literature. A good agreement between estimated values and experimental data from literature confirms the applicability of this method.


2004 ◽  
Vol 29 (3) ◽  
pp. 257-262 ◽  
Author(s):  
H. E. J. VEEGER ◽  
M. KREULEN ◽  
M. J. C. SMEULDERS

We simulated pronator teres rerouting using a three-dimensional biomechanical model of the arm. Simulations comprised the evaluation of changes in muscle length and the moment arm of pronator teres with changes in forearm axial rotation and elbow flexion. The rerouting of Pronator Teres was simulated by defining a path for it through the interosseous membrane with re-attachment to its original insertion. However the effect of moving the insertion to new positions, 2 cm below and above, the original position was also assessed. The effect on total internal rotation and external rotation capacity was determined by calculating the potential moments for pronator teres, supinator, pronator quadratus, biceps brachii and brachioradialis. Pronator teres was found to be a weak internal rotator in extreme pronation, but a strong internal rotator in neutral rotation and in supination. After rerouting pronator teres was only a strong external rotator in full pronation and not at other forearm positions, where the effect of rerouting was comparable to a release procedure.


1983 ◽  
Vol 23 ◽  
Author(s):  
D. H. Lowndes ◽  
R. F. Wood ◽  
C. W. White ◽  
J. Narayan

ABSTRACTMeasurements of the time of the onset of melting of self-implantation amorphized (a) Si, during an incident laser pulse, have been combined with modified melting model calculations and measurements of surface melt duration to demonstrate that the thermal conductivity, Ka, of a-Si is very low (≃0.02 W/cm-K). Ka is also shown to be the dominant parameter determining the dynamical response of ionimplanted Si to pulsed laser radiation; the latent heat and melting temperature of a-Si are relatively unimportant. Cross-sectional transmission electron micrographs on implantation-amorphized Si layers of several different thicknesses show that for energy densities less than the threshold value for complete annealing there are usually two distinct regions in the re-solidified a-Si, consisting of fine-grained and large-grained polycrystalline Si, respectively. The presence of the fine-grained poly-Si suggests that bulk nucleation occurs directly from the highly undercooled liquid phase. Thermal melting model calculations suggest that the nucleation temperature, Tn is ≃1200°C.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950066 ◽  
Author(s):  
N. G. Kelkar ◽  
H. Kamada ◽  
M. Skurzok

The possibility for the existence of the exotic [Formula: see text] states is explored with the objective of calculating the [Formula: see text] momentum distribution inside such nuclei. Even though the latter is an essential ingredient for the analysis of the experimental data on the [Formula: see text], [Formula: see text] and [Formula: see text] reactions aimed at finding an [Formula: see text]-mesic 3He, the data analysis is usually performed by approximating the [Formula: see text] momentum distribution by that of a nucleon. Here, we present calculations performed by solving the three-body Faddeev equations to obtain the momentum distribution of the [Formula: see text] inside possible ([Formula: see text])[Formula: see text], ([Formula: see text])[Formula: see text] and ([Formula: see text])[Formula: see text]-[Formula: see text] states. The [Formula: see text] momentum distributions are found to be much narrower than those of the nucleons and influence the data selection criteria.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
P Parsi-Pour ◽  
B M Kilbourne

Synopsis Locomotor habits in mammals are strongly tied to limb bones’ lengths, diameters, and proportions. By comparison, fewer studies have examined how limb bone cross-sectional traits relate to locomotor habit. Here, we tested whether climbing, digging, and swimming locomotor habits reflect biomechanically meaningful differences in three cross-sectional traits rendered dimensionless— cross-sectional area (CSA), second moments of area (SMA), and section modulus (MOD)—using femora, tibiae, and fibulae of 28 species of mustelid. CSA and SMA represent resistance to axial compression and bending, respectively, whereas MOD represents structural strength. Given the need to counteract buoyancy in aquatic environments and soil’s high density, we predicted that natatorial and fossorial mustelids have higher values of cross-sectional traits. For all three traits, we found that natatorial mustelids have the highest values, followed by fossorial mustelids, with both of these groups significantly differing from scansorial mustelids. However, phylogenetic relatedness strongly influences diversity in cross-sectional morphology, as locomotor habit strongly correlates with phylogeny. Testing whether hind limb bone cross-sectional traits have evolved adaptively, we fit Ornstein–Uhlenbeck (OU) and Brownian motion (BM) models of trait diversification to cross-sectional traits. The cross-sectional traits of the femur, tibia, and fibula appear to have, respectively, diversified under a multi-rate BM model, a single rate BM model, and a multi-optima OU model. In light of recent studies on mustelid body size and elongation, our findings suggest that the mustelid body plan—and perhaps that of other mammals—is likely the sum of a suite of traits evolving under different models of trait diversification.


Author(s):  
Bhargav Rallabandi ◽  
Janine K. Nunes ◽  
Antonio Perazzo ◽  
Sergey Gershtein ◽  
Howard A. Stone

It is often necessary to extract a small amount of a suspension, such as blood, from a larger sample of the same material for the purposes of diagnostics, testing or imaging. A practical challenge is that the cells in blood sediment noticeably on the time scale of a few minutes, making a representative subsampling of the original sample challenging. Guided by experimental data, we develop a Kynch sedimentation model to discuss design considerations that ensure a representative subsampling of blood, from a container of constant cross-sectional area, for the entire range of physiologically relevant hematocrit over a specified time of interest. Additionally, we show that this design may be modified to exploit the sedimentation and perform subsampling to achieve either higher or lower hematocrit relative to that of the original sample. Thus, our method provides a simple tool to either concentrate or dilute small quantities of blood or other sedimenting suspensions.


Author(s):  
Omid Abouali ◽  
Mohammad M. Alishahi ◽  
Homayoon Emdad ◽  
Goodarz Ahmadi

A 3-D Thin Layer Navier-Stokes (TLNS) code for solving viscous supersonic flows is developed. The new code uses several numerical algorithms for space and time discretization together with appropriate turbulence modeling. Roe’s method is used for discretizing the convective terms and the central differencing scheme is employed for the viscous terms. An explicit time marching technique and a finite volume space discretization are used. The developed computational model can handle both laminar and turbulent flows. The Baldwin-Lomax model and Degani-Schiff modifications are used for turbulence modeling. The computational model is applied to a hypersonic laminar flow at Mach 7.95 around a cone at different incidence angles. The circumferential pressure distribution is compared with the experimental data. The cross-sectional Mach number contours are also presented. It is shown that in addition to the outer shock, a cross-flow shock wave is also present in the flow field. The cases of supersonic turbulent flows with Mach number 3 around a tangent-ogive with incidence angles of 6° and a secant-ogive with incidence angles of 10° are also studied. The circumferential pressure distributions are compared with the experimental data and the Euler code results and good agreement is obtained. The cross-sectional Mach number contours are also presented. It is shown that in this case also in addition to the outer shock, a cross-flow shock wave is also present at the incidence angle of 10°.


Sign in / Sign up

Export Citation Format

Share Document